Abstract

Alphaviruses such as the human pathogenic chikungunya virus (CHIKV) and Ross River virus (RRV) can cause explosive outbreaks raising public health concerns. However, no vaccine or specific antiviral treatment is yet available. We recently established a CHIKV vaccine candidate based on trans-amplifying RNA (taRNA). This novel system consists of a replicase-encoding mRNA and a trans-replicon (TR) RNA encoding the antigen. The TR-RNA is amplified by the replicase in situ. We were interested in determining whether multiple TR-RNAs can be amplified in parallel and if, thus, a multivalent vaccine candidate can be generated. In vitro, we observed an efficient amplification of two TR-RNAs, encoding for the CHIKV and the RRV envelope proteins, by the replicase, which resulted in a high antigen expression. Vaccination of BALB/c mice with the two TR-RNAs induced CHIKV- and RRV-specific humoral and cellular immune responses. However, antibody titers and neutralization capacity were higher after immunization with a single TR-RNA. In contrast, alphavirus-specific T cell responses were equally potent after the bivalent vaccination. These data show the proof-of-principle that the taRNA system can be used to generate multivalent vaccines; however, further optimizations will be needed for clinical application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.