Abstract
Recent publications suggest PCV2 vaccine-induced protection is superior when the vaccine and challenge are closely matched. PCV2’s evolutionary rate, propensity for recombination, and genotype shifting, all provide rationale for modernizing PCV2 vaccines. One mechanism to increase a vaccine’s epitope breadth is by designing a bivalent vaccine. The objective of these studies was to evaluate efficacy of a monovalent (PCV1-2 chimera, cPCV2a or cPCV2b) and bivalent (cPCV2a–cPCV2b) vaccine in terms of homologous and heterologous efficacy. In Study A, pigs were vaccinated with cPCV2a or saline and challenged with PCV2a or PCV2b. In Study B, pigs were vaccinated with cPCV2a, cPCV2a–cPCV2b bivalent, or saline, and challenged with PCV2a. In Study C, pigs were vaccinated with cPCV2b, cPCV2a–cPCV2b bivalent, or saline, and challenged with PCV2b. In all studies vaccines and saline were administered intramuscularly to pigs at three to four weeks of age. Virulent PCV2b or PCV2a was administered to all animals approximately three weeks post-vaccination. Both mono and bivalent vaccinated groups demonstrated significantly lower viremia, percent of animals ever viremic, percent of animals with lymphoid depletion and/or histiocytic replacement, and percent of animals with PCV2 colonization of lymphoid tissues compared to saline controls. In Study A, a biologically relevant, though not significantly different, improvement in homologous versus heterologous protection was observed. In Studies B and C, biologically superior efficacy of the bivalent cPCV2a–cPCV2b vaccine compared to either monovalent vaccine was demonstrated. Taken together, cross-protection among mismatched PCV2 vaccine and challenge genotypes is not 100%; a bivalent PCV2 vaccine may provide the best opportunity to broaden coverage to circulating strains of PCV2.
Highlights
Porcine Circovirus (PCV) is a small ~1700 bp, nonenveloped, single stranded DNA virus
PCV2a based vaccines have been highly successful in controlling PCV2a viral infections, widespread use of PCV2a vaccines has contributed to the selection of vaccine-immune resistant PCV type 2 (PCV2) mutants/genotypes
If vaccination has an effect on viral evolution and/or selection of different strains, it can impact viral populations including emergence of new viral genotypes in host populations, increase selective pressure especially on epitope (PCV2 capsid) regions, and promote a tendency of viruses to evolve in a way to distance away from vaccine strains’ genomic sequences [5]
Summary
Porcine Circovirus (PCV) is a small ~1700 bp, nonenveloped, single stranded DNA virus. PCV2-SD refers to a range of clinical signs including post-weaning diarrhea, respiratory dyspnea, failure to gain weight, signs of anemia and icterus, and wasting disease whereby pigs fail to thrive. Other clinical signs including respiratory distress, tremors, enteric disease, dermatitis, nephropathy (PCV-NS), and reproductive failure (PCV-RD) are seen in a condition referred to as PCV-associated diseases (PCVAD) or more PCV diseases (PCVD). Hallmarks of severe PCV2 infection include high viremia levels, high virus titers within tissues, and lymphoid depletion/granulomatous inflammation. This, along with the potential need for a co-factor or disease inducing agent, has confounded attempts to fulfill Koch’s postulates using PCV2 alone. It is generally accepted that PCV2 is highly associated with PCVAD/PCVD. PCV2 associated diseases are recognized as one of the most economically important global issues affecting growing swine with up to 20% mortality possible [2]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.