Abstract

AbstractFor a series of FeIV=O complexes with tetra‐ and pentadentate bispidine ligands, the correlation of their redox potentials with reactivity, involving a variety of substrates for alkane hydroxylation (HAT), alkene epoxidation, and phosphine and thioether oxidation (OAT) are reported. The redox potentials span approximately 350 mV and the reaction rates over 8 orders of magnitude. From the experimental data and in comparison with published studies it emerges that electron transfer and the driving force are of major importance, and this is also supported by the DFT‐based computational analysis. The striking difference of reactivity of two isomeric systems with pentadentate bispidines is found to be due to a destabilization of the S=1 ground state of one of the ferryl isomers, and this is supported by the experimentally determined redox potentials and published stability constants with a series of first‐row transition metal ions with these two isomeric ligands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.