Abstract

We give a solution to the equivalence problem for Bishop surfaces with the Bishop invariant λ=0. As a consequence, we answer, in the negative, a problem that Moser asked in 1985 after his work with Webster in 1983 and his own work in 1985. This will be done in two major steps: We first derive the formal normal form for such surfaces. We then show that two real analytic Bishop surfaces with λ=0 are holomorphically equivalent if and only if they have the same formal normal form (up to a trivial rotation). Our normal form is constructed by an induction procedure through a completely new weighting system from what is used in the literature. Our convergence proof is done through a new hyperbolic geometry associated with the surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.