Abstract

The preparation of a tetranuclear NiII complex, constructed of two binuclear species each containing a macrocyclic cryptand‐like ligand and bridged by a nitrate anion, is reported. The metal ions within the binuclear species are hexacoordinate with different distorted environments. One nickel site, Ni1, has as a compressed octahedral geometry, whereas the other nickel site, Ni2, has a geometry closer to a square pyramid due to the presence of a long metal–ligand bond length. A study of the magnetic properties showed that the intradimer exchange coupling is larger than the interdimer coupling due to differences in the metal–ligand intra‐ and interdimer bond lengths, as confirmed by broken‐symmetry DFT calculations. Wave‐function‐based calculations allowed analysis of both the nature and the magnitude of the magnetic anisotropy of the two Ni sites. The Ni1 and Ni2 sites have, respectively, easy and hard axes of magnetization that are almost orthogonal. Magnetostructural correlations showed that the hard axis of magnetization of Ni2 is due to its geometry, which is closer to square‐pyramidal despite the hexacoordination. On the other hand, the easy axis of magnetization of the Ni1 site is a result of the compressed octahedral geometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.