Abstract

ObjectiveThe purpose of this study was to evaluate the in vitro antibacterial effects of a p‐Cymene‐based bis(pyrazolyl)methane derivative (SC‐19) to advance in developing alternative therapeutic compounds to fight against bacterial isolates from patients with otitis externa (OE).MethodsEighteen swab specimens were collected from patients aged over 18 years diagnosed with OE within at least 7 days of symptom onset, contaminated by only one bacterium type: Pseudomonas aeruginosa (n = 5); Staphylococcus aureus (n = 8); Klebsiella aerogenes (n = 2); Serratia marcescens (n = 1); Morganella morganii (n = 2). To appraise antibacterial activity, minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), minimum biofilm inhibitory concentration (MBIC), and minimum biofilm eradication concentration (MBEC) assays were run at different SC‐19 concentrations.ResultsWhen using SC‐19, S. aureus strains showed less bacterial growth, but no bactericidal effect was observed. The MIC and MBC of SC‐19 were 62.5 and 2000 μg/ml against S. aureus and were >2000 μg/ml against the other isolates obtained from OE, respectively. In addition, the MBICs and MBECs of SC‐19 against S. aureus were 125 and >2000 μg/ml, respectively.ConclusionNowadays the acquired antibiotic resistance phenomenon has stimulated research into novel and more efficient therapeutic agents. Hence, we report that, helped by the structural diversity fostered herein by a range of bis(pyrazolyl)methane derivatives, SC‐19 can be a promising alternative therapeutic option for treating OE caused by S. aureus given the observed effects on both planktonic state and biofilm.Level of EvidenceIV

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call