Abstract

Abstract. In this paper, we develop a new methodology to estimate past changes of growing season temperature at Fontainebleau (northern France). Northern France temperature fluctuations have been documented by homogenised instrumental temperature records (at most 140 year long) and by grape harvest dates (GHD) series, incorporated in some of the European-scale temperature reconstructions. We have produced here three new proxy records: δ18O and δ13C of latewood cellulose of living trees and timbers from Fontainebleau Forest and Castle, together with ring widths of the same samples. δ13C data appear to be influenced by tree and age effects; ring widths are not controlled by a single climate parameter. By contrast, δ18O and Burgundy GHD series exhibit strong links with Fontainebleau growing season maximum temperature. Each of these records can also be influenced by other factors such as vine growing practices, local insolation, or moisture availability. In order to reduce the influence of these potential biases, we have used a linear combination of the two records to reconstruct inter-annual fluctuations of Fontainebleau growing season temperature from 1596 to 2000. Over the instrumental period, the reconstruction is well correlated with the temperature data (R2=0.60). This reconstruction is associated with an uncertainty of ~1.1°C (1.5 standard deviation), and is expected to provide a reference series for the variability of growing season maximum temperature in Western Europe. Spectral analyses conducted on the reconstruction clearly evidence (i) the interest of combining the two proxy records in order to improve the power spectrum of the reconstructed versus observed temperature, (ii) changes in the spectral properties over the time, with varying weights of periodicities ranging between ~6 and ~25 years. Available reconstructions of regional growing season temperature fluctuations get increasingly divergent at the interannual or decadal scale prior to 1800. Our reconstruction suggests a warm interval in the late 17th century, with the 1680s as warm as the 1940s, followed by a prolonged cool period from the 1690s to the 1850s culminating in the 1770s. The persistency of the late 20th century warming trend appears unprecedented.

Highlights

  • We have produced here three new proxy records: δ18O and δ13C of latewood cellulose of living trees and timbers from Fontainebleau Forest and Castle, together with ring widths of the same samples. δ13C data appear to be influenced by tree and age effects; ring widths are not controlled by a single climate parameter

  • As the relationship between growing season temperature and each proxy record (δ18O and grape harvest dates (GHD)) may be distorted by different types of biases over time, such as those related with vine growing practice, insolation and/or moisture availability (Treydte et al, 2007), we propose a bi-proxy linear model which takes advantage of these two independent datasets and improves the quality of the temperature reconstruction and its spectral properties

  • We first describe the proxy records obtained from Fontainebleau tree ring isotopic analyses, and the historical GHD record

Read more

Summary

Introduction

At the European scale, several attempts have been made to quantify temperature changes during the past centuries (Briffa et al, 2002; Chuine et al, 2004; Luterbacher et al, 2004, 2007; Xoplaki et al, 2005; Guiot et al, 2005; Buntgen et al, 2006; Meier et al, 2007). In these quantitative reconstructions of recent temperature variations, only scarce information from the temperate climate area of northern France is included

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.