Abstract

The treatment of osteochondral defects remains challenging due to the limited healing capacity of cartilage and the poor results of traditional methods. Inspired by the structure of natural articular cartilage, we have fabricated a biphasic osteochondral hydrogel scaffold using a Schiff base reaction and a free radical polymerization reaction. Carboxymethyl chitosan (CMCS), oxidized sodium alginate (OSA), and polyacrylamide (PAM) formed a hydrogel (COP) as the cartilage layer, while hydroxyapatite (HAp) was incorporated into the COP hydrogel to obtain a hydrogel (COPH) as an subchondral bone layer. At the same time, hydroxyapatite (HAp) was incorporated into the COP hydrogel to obtain a hydrogel (COPH) as an osteochondral sublayer, combining the two to obtain an integrated scaffold for osteochondral tissue engineering. Interlayer interpenetration through the continuity of the hydrogel substrate and good self-healing properties due to the dynamic imine bonding of the hydrogel resulted in enhanced interlayer bond strength. In addition, in vitro experiments have shown that the hydrogel exhibits good biocompatibility. It shows great potential for osteochondral tissue engineering applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.