Abstract

This work describes a biosensor based on magnetic resonance relaxation switching. The method leverages a large body of work involving nanoscale contrast agents employed in nuclear magnetic resonance (NMR) imaging. The aim was to develop a detection approach that mimics the human immune response to an invading pathogen, the release of 109 to 1012 specific antigens to guarantee quick contact with the pathogen. The technique employs magnetic nanoparticle contrast agents conjugated with specific capture agents to achieve a similar contact goal. Detection of the species involves monitoring the average relaxation time (T2) of water protons in the solution, which is highly sensitive to the concentration and distribution of the magnetic nanoparticles present. With multiple nanoparticles attaching to each individual target species their distribution will be altered, and correspondingly, the average proton relaxation time will change

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.