Abstract

Flexible-type signal probes and their detection methods are increasingly being applied in biosensors. Among these, temperature-based signal probes represent a novel research direction. These sensors convert immunoassay signals into temperature signals, which are then detected using a thermometer or thermal infrared reader. However, from a physical viewpoint, we know that the temperature measured directly using a thermal infrared camera is the infrared radiance temperature, which is proportional to both the true temperature and emissivity. Herein, we design a novel sensing method that uses infrared radiance rather than true temperature as the signal probe. We convert the immunoassay to an infrared radiation temperature measurement by controlling an aluminum plate in constant temperature whose infrared radiation temperature varied significantly with immunoassay-based the amount of the target. We then develop two readout systems: one is based on a scientific-grade infrared camera, and the other uses a smartphone-based thermal camera, which is more portable, flexible, and can be used as an in-pocket sensor. The sensors are verified via detecting exemplary biomarker human IgG, and show excellent quantitative model performances in 0–100 ng mL−1 concentration range with the detection limit estimated as low as 0.54 ng mL−1. The excellent quantitative results demonstrate the powerful detection performance of this sensing method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.