Abstract

SummaryA novel cyclobutane-containing diacid building block, CBDA-3, was synthesized from sorbic acid using clean, efficient [2 + 2] photocycloaddition. This photoreaction can be performed using commercially available germicidal lamps, which represent a form of ECO-UV. SC-XRD showed that the cyclobutane ring in CBDA-3 has a unique semi-rigid character, unlike more rigid aromatic rings or more flexible types of aliphatic rings. C=C bonds present in the structure of CBDA-3 provide opportunities for derivatization which could be used to alter the characteristics of polymers made from this monomer. Additionally, TGA and DSC analysis showed CBDA-3 to have excellent thermal stability. These characteristics make CBDA-3 a promising building block with the potential to be used as a sustainable alternative to traditional petroleum-derived diacids. Finally, a facile and reliable Fischer esterification of CBDA-3 was performed to tune its melting point and solubility for different applications and to demonstrate the applicability of this building block in polymer synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call