Abstract
Ferulic acid is a known precursor for vanillin production but the significance of agro waste as substrates for its extraction, in combination with microbes is a less explored option. Various lactic acid bacteria were screened for the production of ferulic acid esterase (FAE) and Enterococcus lactis SR1 was found to produce maximum FAE (7.54 ± 0.15IU/ml) in the synthetic medium under submerged fermentation. To make the process cost effective, various lignocellulosic agroresidues were evaluated for the production of FAE from the bacterium. It was found that wheat bran serves as the best substrate for FAE production (4.18 ± 0.12IU/ml) from E. lactis SR1. Further, optimization of fermentation conditions for FAE production from E. lactis SR1 using wheat bran as carbon source led to an increase in the enzyme production (7.09 ± 0.21IU/ml) by 1.5 fold. The FAE produced was used alone or in combination with commercial holocellulase for biological release of FA from the tested agroresidues. The highest release of FA (mg/g) by enzymatic extraction occurred in sugarbeet pulp (2.56), followed by maize bran (1.45), wheat bran (1.39) and rice bran (0.87), when both the enzymes (FAE and holocellulase) were used together. Alkaline extraction and purification of ferulic acid (FA) from these agro residues also showed that sugarbeet pulp contains the highest amount of FA (5.5mg/g) followed by maize bran (3.0mg/g), wheat bran (2.8mg/g) and rice bran (1.9mg/g), similar to the trend obtained in biological/enzymatic extraction of FA from these residues. Furthermore, the substrates were found to release higher reducing sugars when both commercial holocellulase and FAE were used in combination than by the use of holocellulase alone. Thus, FAEs not only release FA but also enabled hemicellulase and cellulase to release more sugars from plant material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.