Abstract

Observed soil degree‐days (SDD) for 20 forest stands in the discontinuous permafrost zone of interior Alaska range from 483 to 2217. These stands differ in terms of forest structure, topography, and soils. A biophysical model that solves the surface energy budget of a multilayer forest canopy was used to examine which site factors were most important in controlling the observed soil temperature gradient. Simulated soil temperature averaged 851 SDD for the 20 sites. Sensitivity analyses indicated that this average could vary by 0–88 SDD (0–10% of the mean) because of possible parameter error. Removing the forest canopy and the moss cover caused the soil to warm, on average, by 408 and 345 SDD, respectively. Elevation and soil drainage differences among sites were of secondary importance, causing SDD to deviate by 71 and 66 SDD, respectively. Slope and aspect had little effect on soil temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.