Abstract

Dopamine modulates working memory in the prefrontal cortex (PFC) and is crucial for obsessive-compulsive disorder (OCD). However, the mechanism is unclear. Here we establish a biophysical model of the effect of dopamine (DA) in PFC to explain the mechanism of how high dopamine concentrations induce persistent neuronal activities with the network plunging into a deep, stable attractor state. The state develops a defect in working memory and tends to obsession and compulsion. Weakening the reuptake of dopamine acts on synaptic plasticity according to Hebbian learning rules and reward learning, which in turn affects the strength of neuronal synaptic connections, resulting in the tendency of compulsion and learned obsession. In addition, we elucidate the potential mechanisms of dopamine antagonists in OCD, indicating that dopaminergic drugs might be available for treatment, even if the abnormality is a consequence of glutamate hypermetabolism rather than dopamine. The theory highlights the significance of early intervention and behavioural therapies for obsessive-compulsive disorder. It potentially offers new approaches to dopaminergic pharmacotherapy and psychotherapy for OCD patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.