Abstract
There is significant interest in developing methods that visualize and detect RNA. Bioorthogonal template-driven tetrazine ligations could be a powerful route to visualizing nucleic acids in native cells, yet past work has been limited with respect to the diversity of fluorogens that can be activated via a tetrazine reaction. Herein we report a novel bioorthogonal tetrazine uncaging reaction that harnesses tetrazine reactivity to unmask vinyl ether caged fluorophores spanning the visible spectrum, including a near-infrared (NIR)-emitting cyanine dye. Vinyl ether caged fluorophores and tetrazine partners are conjugated to high-affinity antisense nucleic acid probes, which show highly selective fluorogenic reactivity when annealed to their respective target RNA sequences. A target sequence in the 3' untranslated region of an expressed mRNA was detected in live cells employing appropriate nucleic acid probes bearing a tetrazine-reactive NIR fluorogen. Given the expansion of tetrazine fluorogenic chemistry to NIR dyes, we believe highly selective proximity-induced fluorogenic tetrazine reactions could find broad uses in illuminating endogenous biomolecules in cells and tissues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.