Abstract

Zeolite-based nanomaterials have a large number of applications in the field of medicine due to their high porosity, biocompatibility and biological stability. In this study, we designed cerium (Ce)-doped Linde Type A (LTA) zeolite-based nanomaterials (Ce/Zeo-NMs) as a multifunctional mesoporous nanoenzyme to reduce dysfunction of the neurovascular unit (NVU) and attenuate cerebral ischaemia-reperfusion (I/R) injury. Owing to its unique adsorption capacity and mimetic catalytic activities, Ce@Zeo-NMs adsorbed excess zinc ions and exhibited scavenging activity against reactive oxygen species (ROS) induced by acute I/R, thus reshaping the oxidative and zinc microenvironment in the ischaemic brain. In vivo results demonstrated that Ce@Zeo-NMs significantly reduced ischaemic damage to the NVU by decreasing the infarct area, protecting against breakdown of the blood–brain barrier (BBB) via inhibiting the degradation of tight junction proteins (TJPs) and inhibiting activation of microglia and astrocytes in a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R). Taken together, these findings indicated that Ce@Zeo-NMs may serve as a promising dual-targeting therapeutic agent for alleviating cerebral I/R injury. Statement of SignificanceCerium (Ce)-doped Linde Type A zeolite-based nanomaterials (Ce/Zeo-NMs) as a multifunctional mesoporous nanoenzyme were designed for inducing neuroprotection after ischaemic stroke by reducing dysfunction of the neurovascular unit (NVU). Ce@Zeo-NMs had the ability to adsorb excessive Zn2+ and showed mimetic enzymatic activities. As a result, Ce@Zeo-NMs protected against cerebral ischaemia and reduced the damage of NVU by improving the integrity of blood brain barrier (BBB) and inhibiting activation of microglia and astrocytes in a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R). These findings indicated that Ce@Zeo-NMs may serve as a therapeutic strategy for neuroprotection and functional recovery upon ischaemic stroke onset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.