Abstract

AbstractEfficient sweat release and heat dissipation are required for functional textiles that improve comfort and productivity while being worn in daily life. However, the porous structure of textiles exhibits an opposite effect on water transport and heat transfer capacities, leading to a longstanding bottleneck for the design of multifunctional drying and cooling textiles. Here, a biomimetic transpiration textile based on the hierarchical and interconnected network of vascular plants is demonstrated for highly efficient personal drying and cooling. The transpiration‐inspired design offers a textile with distinct advantages, including a desired one‐way water transport index (1072%), rapid water evaporation rate (0.36 g h−1), and outstanding through‐plane (0.182 W m−1 K−1) and in‐plane (1.137 W m−1 K−1) thermal conductivities. Moreover, based on the optimized performance, plausible mechanisms are proposed and calculated to provide insight into the water transport and heat transfer within the hierarchical and interconnected network, which provide promising benefits to the development of multifunctional drying and cooling textiles. Overall, the successful synthesis of this biomimetic transpiration textile provides a comfortable microclimate to the human body, thus satisfying the growing demand for better health, productivity, and sustainability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.