Abstract

The immobilization of membrane-bound molecules on organic-inorganic cholesteryl-succinyl silane (CSS) nanofibers is investigated. Fluorescent microscopy and a cell capture assay confirm the stable and functional immobilization of membrane-bound antibodies and imaging agents on the electrospun CSS nanofibers. An insert-and-tighten mechanism is proposed for the observed hydration-induced reduction in lipid nanofiber diameter, the immobilization of membrane-bound molecules, and the improved efficiency of cell capture by the functionalized CSS nanofibers over their film counterparts. The ability to stably and functionally immobilize membrane-bound molecules on the CSS nanofibers presents a promising method to functionalize lipid-based nanomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.