Abstract
Heart valve disease poses a significant clinical challenge, especially in pediatric populations, due to the inability of existing valve replacements to grow or respond biologically to their microenvironment. Tissue-engineered heart valves (TEHVs) provide a solution by facilitating patient-specific models for self-repair and remodeling. In this study, a 3D-bioprinted TEHV is designed to emulate the trilayer leaflet structure of an aortic valve. A cell-laden hydrogel scaffold made from gelatin methacrylate and polyethylene glycol diacrylate (GelMA/PEGDA) incorporates valvular interstitial-like (VIC-like) cells, being reinforced with a layer of polycaprolactone (PCL). The composition of the hydrogel scaffold remains stable over 7 days, having increased mechanical strength compared to pure GelMA. The scaffold maintains VIC-like cell function and promotes extracellular matrix (ECM) protein expression up to 14 days under two dynamic culture conditions: shear stress and stretching; replicating heart valve behavior within a more physiological-like setting and suggesting remodeling potential via ECM synthesis. This TEHV offers a promising avenue for valve replacements, closely replicating the structural and functional attributes of a native aortic valve, leading to mechanical and biological integration through biomaterial-cellular interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.