Abstract

Lung-on-a-chip models hold great promise for disease modeling and drug screening. Herein, inspired by the iridescence phenomenon of soap bubbles, a novel biomimetic 3D microphysiological lung-on-a-chip system with breathing visualization is presented. The system, with an array of pulmonary alveoli at the physiological scale, is constructed and coated with structural color materials. Cyclic deformation is induced by regular airflow, resembling the expansion and contraction of the alveoli during rhythmic breathing. As the deformation is accompanied with corresponding synchronous shifts in the structural color, the constructed system offers self-reporting of the cell mechanics and enables real-time monitoring of the cultivation process. Using this system, the dynamic relationships between the color atlas and disease symptoms, showing the essential role of mechanical stretching in the phenotypes of idiopathic pulmonary fibrosis, are investigated. These features make this human lung system ideal in biological study, disease monitoring, and drug discovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.