Abstract

Functional magnetic resonance imaging (fMRI) data-processing methods in the time domain include correlation analysis and the general linear model, among others. Virtually, many fMRI processing strategies utilise temporal information and ignore or pay little attention to phase information, resulting in an unnecessary loss of efficiency. We proposed a novel method named Hilbert phase entropy imaging (HPEI) that used the discrete Hilbert transform of the magnitude time series to detect brain functional activation. The data from two simulation studies and two in vivo fMRI studies that both contained block-design and event-related experiments revealed that the HPEI method enabled the effective detection of brain functional activation and the distinction of different response patterns. Our results demonstrate that this method is useful as a complementary analysis, but hypothesis-constrained, in revealing additional information regarding the complex nature of fMRI time series.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call