Abstract

BackgroundA novel method of fixation has been described for the treatment of pure depression fractures of the lateral tibial plateau. Fracture fragments are elevated through a reamed transtibial tunnel. An interference screw is then passed into the tunnel to buttress fracture fragments from beneath. This method of fixation has perceived benefits but there have been no studies to demonstrate that the technique is biomechanically sound. The aim of our study is to compare traditional parallel, subchondral screw fixation with the use of an interference screw, assessing maintenance of fracture reduction following simulated post-operative loading, and overall construct strength.MethodsDepression fractures of the lateral tibial plateau were simulated in 14 porcine knees. Fracture fragments were elevated through a reamed transtibial tunnel and samples were randomly assigned to a fixation method. 7 knees underwent traditional fixation with parallel subcortical cannulated screws, the remainder were stabilized using a single interference screw passed through the transtibial tunnel. Following preloading, each tibia was cyclically loaded from 0 to 500 Newtons for 5,000 cycles using a Nene testing machine. Displacement of the depressed fracture fragments were measured pre and post loading. Samples were then loaded to failure to test ultimate strength of each construct.ResultsThe depression displacement of the fractures fixed using cannulated screws was on average 0.76 mm, in comparison to 0.61mm in the interference screw group (p=0.514). Mechanical failure of the cannulated screw constructs occurred at a mean of 3400 N. Failure of the transtibial interference screw constructs occurred at a mean of 1700 N (p<0.01). In both groups the mechanism of ultimate failure was splitting of the tibial plateau.ConclusionThese results demonstrate the increased biomechanical strength of parallel, cannulated screws for depression fractures of the tibial plateau, however the use of a transtibial interference screw may be a viable method of fixation under physiological loads.

Highlights

  • A novel method of fixation has been described for the treatment of pure depression fractures of the lateral tibial plateau

  • Arthroscopy is increasingly used as an adjunct to the treatment of tibial plateau fractures

  • Cyclical loading There was no statistically significant difference between mean displacement of the articular depression, in fractures fixed using subchondral screws, and those in the interference screw group. (Table 1) No specimens failed during cyclical loading

Read more

Summary

Introduction

A novel method of fixation has been described for the treatment of pure depression fractures of the lateral tibial plateau. An interference screw is passed into the tunnel to buttress fracture fragments from beneath. This method of fixation has perceived benefits but there have been no studies to demonstrate that the technique is biomechanically sound. Arthroscopy allows direct visualization of the articular surface with out need for arthrotomy or meniscal detachment It allows evacuation of haemarthrosis or fracture debris from joint, and treatment of associated meniscal pathologies [1,2]. More recently a newer method of fixation has been described which involves the use of an interference screw placed beneath elevated bone fragments in place of traditional transverse subchondral screws [5]. Use of an interference screw allows simultaneous, precise fracture reduction under direct arthroscopic visualization and reamed metaphyseal bone can be used as autograft. The technique eliminates the need for percutaneous buttress screw placement under fluoroscopic guidance, and avoids the soft tissue irritation that is sometimes associated with prominent percutaneous screws

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call