Abstract
Background and ObjectiveChildbirth trauma is a major health concern that affects millions of women worldwide. Severe degrees of perineal trauma, designated as obstetric anal sphincter injuries (OASIS), and levator ani muscle (LAM) injuries are associated with long-term morbidity. While significant research has been conducted on LAM avulsions, less attention has been given to perineal trauma and OASIS, which affect up to 90% and 11% of vaginal deliveries, respectively. Despite being widely discussed, childbirth trauma remains unpredictable. This work aims to enhance the modeling of the maternal musculature during childbirth, with a particular focus on understanding the mechanisms underlying the often overlooked perineal injuries. MethodsA geometrical model of the pelvic floor muscles (PFM) and perineum (including the perineal body, ischiocavernosus, bulbospongiosus, superficial and deep transverse perineal muscles) was created. The muscles were characterized by a transversely isotropic visco-hyperelastic constitutive model. Two simulations of vaginal delivery were conducted with the fetus in the vertex presentation and occipito-anterior position, with and without the perineum. ResultsThe simulation that considered the perineum exhibited higher stresses over an extended area of the PFM, which suggests that including additional structures can impact the obtained results. The maximum stretch of the urogenital hiatus was 2.94 and the maximum stress was 23.86 kPa. The perineal body reached a maximum stretch of 1.95, which was more pronounced near the urogenital hiatus, where perineal tears may occur. The external anal sphincter's transverse diameter decreased by 51% and the maximum principal stresses were observed in the area close to the perineal body, where OASIS can occur. ConclusionsThe present study emphasizes the importance of including most structures involved in vaginal delivery in its biomechanical analysis and represents another step further in the understanding of perineal injuries and OASIS. The superior region of the perineal body and its connection to the urogenital hiatus and anal sphincter have been identified as the most critical regions, highly susceptible to injury.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.