Abstract
BackgroundPedicle screw based spinal fixation systems have been widely used for treating a variety of spinal diseases. The retentive force is an important factor that determines structural stability. The screw tulip design and the magnitude of nut tightening torque influence the retentive force. This study investigated the influences of varied tilt angles between the shaft-rod interface and varied nut tightening torques on the retentive force of the monoaxial, polyaxial, and uniplanar screws. MethodsThree types of tulip constructs were biomechanically tested. Two parameters that affect the retentive force include the tilt angle and the nut tightening torque. The retentive force was investigated by an axial gripping capacity test and axial torque gripping capacity test. FindingAmong all combinations of screw designs and tilt angles, the 12 Nm nut tightening torque offered a greater retentive force than the 8 Nm, except for monoaxial screws with a 0 degree tilt angle. For monoaxial screws, the retentive force was negatively correlated with increasing tilt angles. For polyaxial and uniplanar screws, the retentive forces remained constant with increasing tilt angles. InterpretationIn monoaxial screws, when the axis of the shaft isn't perpendicular to the axis of the rod, a gap is formed between the tulip-rod interface. This results in a decreased retentive force. In polyaxial and uniplanar screws, the contact surfaces were the same in different tilt angles, therefore, the retentive force remained constant, which was attributed to the adjustable tulips always being perpendicular to the axis of the rods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.