Abstract

BackgroundThe physis is the weakest component of immature long bones, and physeal fractures constitute about 30% of fractures in growing dogs. Fractures of the proximal humeral physis typically have a Salter Harris type I or II configuration. These fractures require accurate reduction and adequate stabilization to allow for any potential continued longitudinal bone growth, in conjunction with physeal fracture healing. Conventional internal fixation of these fractures involves insertion of two parallel Kirschner wires, although other methods described include tension band wiring, Rush pinning, and lag screws. However these recommendations are based on anecdotal evidence, and information about the biomechanical stability of physeal fracture repair is sparse. The unique anatomical structure of the epiphyseal-metaphyseal complex makes the gripping of the epiphysis for ex vivo biomechanical testing of physeal fracture repair very challenging. The objective of our study was to biomechanically assess the optimal number (three, two or one) of implanted Kirschner wires in a porcine Salter Harris I proximal humeral physeal fracture model, using motion analysis tracking of peri-fragmental retro-reflective markers while constructs were subjected to a constant axial compression and a sinusoidal torque of +/− 2 Nm at 0.5 Hz for 250 cycles.ResultsThere were significant differences between the three constructs (three, two or one Kirschner wire repair) for gross angular displacement (p < 0.001). The difference between three pins and two pins on toggle was not significant (p = 0.053), but both three-pin and two-pin fixation significantly reduced rotational toggle compared to one-pin fixation. Construct stiffness was not significantly different between any of the pin groups (p > 0.33).ConclusionsMotion analysis tracking using peri-fragmental markers in this porcine model of physeal fracture repair found that the stability at the fracture site of one-pin fixation was significantly less than two-pin and three-pin fixation. Whether there was increased stabilization of these fractures with three-pin fixation compared to two-pin fixation was not conclusive in this porcine model.

Highlights

  • The physis is the weakest component of immature long bones, and physeal fractures constitute about 30% of fractures in growing dogs

  • Closure of the proximal humeral physis occurs at 10–13 months of age and it is one of the last physes to close in the canine appendicular skeleton [6,7,8]

  • A reproducible ex vivo physeal fracture model of the proximal humerus was created using cadaveric porcine bones. In this model, decreasing the number of Kirschner wire implants inserted into a Salter-Harris I physeal fracture of the proximal humerus significantly increased gross angular displacement of the epiphysis

Read more

Summary

Introduction

The physis is the weakest component of immature long bones, and physeal fractures constitute about 30% of fractures in growing dogs. Fractures of the proximal humeral physis typically have a Salter Harris type I or II configuration These fractures require accurate reduction and adequate stabilization to allow for any potential continued longitudinal bone growth, in conjunction with physeal fracture healing. Conventional internal fixation of these fractures involves insertion of two parallel Kirschner wires, other methods described include tension band wiring, Rush pinning, and lag screws These recommendations are based on anecdotal evidence, and information about the biomechanical stability of physeal fracture repair is sparse. In fractures of the proximal humeral physis, there is usually concurrent separation of the humeral head and the greater tubercle from the humeral metaphysis [5, 9] These fractures are typically Salter-Harris type I or II [9] and most require surgical intervention involving open reduction of the fracture followed by internal fixation [9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.