Abstract

Objective To compare biomechanical pullout strength of cervical transfacet pedicle screws to that of standard pedicle screws. Methods Ten fresh human cadaveric cervical spines were harvested. On one side, transfacet pedicle screws were placed at the C3,4, C5,6, and C7T1 levels. On the other side, pedicle screws were, placed at the C3, C5, and C7 levels. The screw insertion technique at each level was randomized for right or left. The starting point for the transfacet pedicle screw insertion was about located at the midpoint of the inferolateral quadrant of the lateral mass and the direction of the screw was about 50° caudally in the sagittal plane and about 45° medially in the axial plane. Screws were placed across the facet joint and the pedicle into the body of the caudal vertebra. The entry points for pedicle screw was located at the midpoint of the superolateral quadrant of the lateral mass and the direction of the screw was about 45° toward the midline in the transverse plane and toward the upper third of the vertebral body in the sagittal plane. The pedicle screws were oriented along the axis of the pedicle in an effort to avoid violations of the cortical wall. All the screw insertions were based on direct observation and the CT scan on the pedicles. After screw placement, axial pullout testing was performed. Results The mean pullout strength for the transfacet pedicle screws was (694±42) N. This compares with (670±36) N for the pedicle screws (P< 0.05). The greatest difference at a single level in pullout strength was observed at the C5,6 level, with a mean difference of 38 N. Conclusion Transfacet pedicle screws exhibited statistically greater pullout strength to pedicle screws. At each level the transfacet pedicle screws exhibited greater pullout strength than the pedicle screws. Posterior transarticular pedicle screw fixation in the cervical spine affords an alternative to standard screw placement for plate fixation and cervical stabilization. Key words: Cervical vertebrae; Internal fixators; Biomechanics

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call