Abstract

BackgroundThe goal of Functional Electrical Stimulation (FES) cycling is to provide the health benefits of exercise to persons with paralysis. To achieve the greatest health advantages, patients should produce the highest possible mechanical power. However, the mechanical power output (PO) produced during FES cycling is very low. Unfavorable biomechanics is one of the important factors reducing PO. The purpose of this study was to investigate the primary joints and muscles responsible for power generation and the role of antagonistic co-contraction in FES cycling.MethodsSixteen subjects with complete spinal cord injury (SCI) pedaled a stationary recumbent FES tricycle at 60 rpm and a workload of 15 W per leg, while pedal forces and crank angle were recorded. The joint muscle moments, power and work were calculated using inverse dynamics equations.ResultsTwo characteristic patterns were found; in 12 subjects most work was generated by the knee extensors in the propulsion phase (83% of total work), while in 4 subjects most work was shared between by the knee extensors (42%) and flexors (44%), respectively during propulsive and recovery phases. Hip extensors produced only low net work (12 & 7%). For both patterns, extra concentric work was necessary to overcome considerable eccentric work (-82 & -96%).ConclusionsThe primary power sources were the knee extensors of the quadriceps and the knee flexors of the hamstrings. The antagonistic activity was generally low in subjects with SCI because of the weakness of the hamstrings (compared to quadriceps) and the superficial and insufficient hamstring mass activation with FES.Electronic supplementary materialThe online version of this article (doi:10.1186/1743-0003-11-123) contains supplementary material, which is available to authorized users.

Highlights

  • The goal of Functional Electrical Stimulation (FES) cycling is to provide the health benefits of exercise to persons with paralysis

  • The mechanical power output (PO) produced during FES cycling is very low (i.e. 8–35 W) [11] which is an order of magnitude lower than power obtained in volitional cycling of able-bodied (AB) persons

  • Three factors are thought responsible for the lower power outputs achieved with FES cycling in persons with spinal cord injury (SCI): 1) the inefficiency of artificial muscle activation, 2) the crude control of muscle groups accomplished by stimulation, and 3) muscle atrophy and transformation due to chronic paralysis and disuse

Read more

Summary

Introduction

The goal of Functional Electrical Stimulation (FES) cycling is to provide the health benefits of exercise to persons with paralysis. Three factors are thought responsible for the lower power outputs achieved with FES cycling in persons with SCI: 1) the inefficiency of artificial muscle activation, 2) the crude control of muscle groups accomplished by stimulation, and 3) muscle atrophy and transformation due to chronic paralysis and disuse. All these causes lead to an increased fatigue rate, further limiting the health benefits [5] of the workout [16,17]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call