Abstract

The nucleoside analog cytarabine (Ara-C [cytosine arabinoside]) is the key agent for treating acute myeloid leukemia (AML); however, up to 30% of patients fail to respond to treatment. Screening of patient blood samples to determine drug response before commencement of treatment is needed. This project aimed to construct and evaluate a self-bioluminescent reporter strain of Escherichia coli for use as an Ara-C biosensor and to design an in vitro assay to predict Ara-C response in clinical samples. We used transposition mutagenesis to create a cytidine deaminase (cdd)-deficient mutant of E. coli MG1655 that responded to Ara-C. The strain was transformed with the luxCDABE operon and used as a whole-cell biosensor for development an 8-h assay to determine Ara-C uptake and phosphorylation by leukemic cells. Intracellular concentrations of 0.025 μmol/L phosphorylated Ara-C were detected by significantly increased light output (P < 0.05) from the bacterial biosensor. Results using AML cell lines with known response to Ara-C showed close correlation between the 8-h assay and a 3-day cytotoxicity test for Ara-C cell killing. In retrospective tests with 24 clinical samples of bone marrow or peripheral blood, the biosensor-based assay predicted leukemic cell response to Ara-C within 8 h. The biosensor-based assay may offer a predictor for evaluating the sensitivity of leukemic cells to Ara-C before patients undergo chemotherapy and allow customized treatment of drug-sensitive patients with reduced Ara-C dose levels. The 8-h assay monitors intracellular Ara-CTP (cytosine arabinoside triphosphate) levels and, if fully validated, may be suitable for use in clinical settings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call