Abstract

In this paper, we investigate the real-time flocking control of Multi-Agent Systems (MAS) in the presence of system uncertainties and dynamic environment. To handle the impacts from system uncertainties and dynamic environment, a novel reinforcement learning technique, which is appropriate for real-time implementation, has been integrated with multi-agent flocking control in this paper. The Brain Emotional Learning Based Intelligent Controller (BELBIC) is a biologically-inspired reinforcement learning-based controller relying on a computational model of emotional learning in the mammalian limbic system. The learning capabilities, multi-objective properties, and low computational complexity of BELBIC make it a very promising learning technique for implementation in real-time applications. Firstly, a novel brain emotional learning-based flocking control structure is proposed. Then, the real-time update laws are developed to tune the emotional signals based on real-time operational data. It is important to note that this data-driven reinforcement learning approach relaxes the requirement for system dynamics and effectively handle the uncertain impacts of the environment. Using the tuned emotional signals, the optimal flocking control can be obtained. The Lyapunov analysis has been used to prove the convergence of the proposed design. The effectiveness of the proposed design is also demonstrated through numerical and experimental results based on the coordination of multiple Unmanned Aerial Vehicles (UAVs).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call