Abstract
In this article, the authors used saliency detection for video streaming problem to be able to transmit regions of video frames in a ranked manner based on their importance. The authors designed an empirically-based study to investigate bottom-up features to achieve a ranking system stating the saliency priority. We introduced a gradual saliency detection model using a Bayesian framework for static scenes under conditions that we had no cognitive bias. To extract color saliency, we used a new feature contrast in Lab color space as well as a k-nearest neighbor search based on k-d tree search technique to assign a ranking system into different colors according to our empirical study. To find the salient textured regions we employed contrast-based Gabor energy features and then we added a new feature as intensity variance map. We merged different feature maps and classified saliency maps using a Naive Bayesian Network to prioritize the saliency across a frame. The main goal of this work is to create the ability to assign a saliency priority for the entirety of a video frame rather than simply extracting a salient area which is widely performed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Multimedia Data Engineering and Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.