Abstract

The locomotor system of slowly walking insects is well suited for coping with highly irregular terrain and therefore might represent a paragon for an artificial six-legged walking machine. Our investigations of the stick insect Carausius morosus indicate that these animals gain their adaptivity and flexibility mainly from the extremely decentralized organization of the control system that generates the leg movements. Neither the movement of a single leg nor the coordination of all six legs (i.e., the gait) appears to be centrally pre-programmed. Thus, instead of using a single, central controller with global knowledge, each leg appears to possess its own controller with only procedural knowledge for the generation of the leg's movement. This is possible because exploiting the physical properties avoids the need for complete information on the geometry of the system that would be a prerequisite for explicitly solving the problems. Hence, production of the gait is an emergent property of the whole system, in which each of the six single-leg controllers obeys a few simple and local rules in processing state-dependent information about its neighbors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.