Abstract

Associative system has attracted increasing attention for it can store basic information and then infer details to match perception with an efficient self-organization algorithm. However, the implementation of the associative system with the application of real-world data is relatively difficult. To address this issue, we propose a novel biologically inspired auto-associative (BIAA) network to explore the structure, encoding and formation of associative memory as well as to extend the ability to real-world application. Our network is constructed by imitating the organization of the cortical minicolumns where each minicolumn contains plenty of parallel biological spiking neurons. To allow the network to learn and predict one symbol per theta cycle, we incorporate synaptic delay and theta oscillation into the neuron dynamic process. Subsequently, we design a sparse temporal population (STP) coding scheme that allows each input symbol to be represented as stable, unique, and easily recallable sparsely distributed representations. By combining associative learning dynamics with the STP coding, our network realizes efficient storage and inference in an ordered manner. Experimental results indicate that the proposed network successfully performs sequence retrieval from partial text and sequence recovery from distorted information. BIAA network provides new insight into introducing biologically inspired mechanisms into associative system and has enormous potential for hardware and software applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call