Abstract
The 1990 Clean Air Act Amendments require that health risk from exposure to vinyl acetate be assessed. Vinyl acetate is a nasal carcinogen in rats, but not mice, and induces olfactory degeneration in both species. A biologically based approach to extrapolating risks of inhalation exposure from rats to humans was developed, which incorporates critical determinants of interspecies dosimetry. A physiologically based pharmacokinetic (PBPK) model describing uptake and metabolism of vinyl acetate in rat nose was validated against nasal deposition data collected at three airflow rates. The model was also validated against observations of metabolically derived acetaldehyde. Modifying the rat nose model to reflect human anatomy created a PBPK model of the human nose. Metabolic constants from both rats and humans specific for vinyl acetate and acetaldehyde metabolism enabled predictions of various olfactory tissue dosimeters related to the mode of action. Model predictions of these dosimeters in rats corresponded well with observations of vinyl acetate toxicity. Intracellular pH (pHi) of olfactory epithelial cells was predicted to drop significantly at airborne exposure concentrations above the NOAEL of 50 ppm. Benchmark dose methods were used to estimate the ED10 and LED10 for olfactory degeneration, the precursor lesion thought to drive cellular proliferation and eventually tumor development at excess cellular acetaldehyde levels. A concentration x time adjustment was applied to the benchmark dose values. Human-equivalent concentrations were calculated by using the human PBPK model to predict concentrations that yield similar cellular levels of acetic acid, acetaldehyde, and pHi. After the application of appropriate uncertainty factors, an ambient air value of 0.4 to 1.0 ppm was derived. The biologically based approach supports a workplace standard of 10 ppm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.