Abstract

Xylella fastidiosa pauca ST53 is the bacterium responsible for the Olive Quick Decline Syndrome that has killed millions of olive trees in Southern Italy. A recent work demonstrates that a rational integration of vector and transmission control measures, into a strategy based on chemical and physical control means, can manage Xylella fastidiosa invasion and impact below an acceptable economic threshold. In the present study, we propose a biological alternative to the chemical control action, which involves the predetermined use of an available natural enemy of Philaenus spumarius, i.e., Zelus renardii, for adult vector population and infection biocontrol. The paper combines two different approaches: a laboratory experiment to test the predation dynamics of Zelus renardii on Philaenus spumarius and its attitude as candidate for an inundation strategy; a simulated experiment of inundation, to preliminary test the efficacy of such strategy, before eventually proceeding to an in-field experimentation. With this double-fold approach we show that an inundation strategy with Zelus renardii has the potential to furnish an efficient and “green” solution to Xylella fastidiosa invasion, with a reduction of the pathogen incidence below 10%. The biocontrol model presented here could be promising for containing the impact and spread of Xylella fastidiosa, after an in-field validation of the inundation technique. Saving the fruit orchard, the production and the industry in susceptible areas could thus become an attainable goal, within comfortable parameters for sustainability, environmental safety, and effective plant health protection in organic orchard management.

Highlights

  • The olive orchard is represented as a simple square lattice with olive trees and herbaceous vegetation distributed on the lattice sites in a realistic way; adult vectors are particles moving on the lattice according to rules dictated by the interplay between vector and vegetation life cycles and by phenology; the tree’s epidemic process is modelled as a stochastic SIR (Susceptible, Infected, Removed) model [8] on a lattice [9, 10]

  • In this study we presented the encouraging results of a work based on the integration of a laboratory experiment with a numerically simulated experiment, demonstrating the potential efficacy of an inundation strategy with a natural enemy of the Xf main vector, Zelus renardii (Zr), for arresting the Olive Quick Decline Syndrome (OQDS) syndrome that is devastating the fruit orchard production in Italy

  • The laboratory experiment showed that Zr presents itself as a good candidate to conceive a biocontrol strategy against the Xf vector and infection

Read more

Summary

Introduction

Vector control is expected to be the main action to manage insect-borne pathogens and to contain the disease. In [7] authors propose an epidemiological lattice model for the pathogen invasion of olive orchard aimed at identifying an appropriate strategy for arresting the infection, built on vector management throughout the entire vector’s life cycle. An Integrated Pest Management strategy, based on tailoring, timing, and tuning of available control actions, is superimposed on this baseline model, enabling authors to demonstrate that it is possible to stop the Xf invasion in a two year interval, by a rational and quantitative vector and infection control strategy. The pest management is based on the integration of diverse chemical and physical control means versus different steps of vector’s life cycle. Chemical control, acting on the Xf vectors, indirectly impedes or minimize the infection preventing Xf to invade new territories

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.