Abstract
The nacre-inspired laminates are promising materials for their excellent mechanics. However, the interfacial defects between organic-inorganic phases commonly lead to the crack propagation and fracture failure of these materials under stress. A natural biomineral, bone, has much higher bending toughness than the nacre. The small size of inorganic building units in bone improves the organic-inorganic interaction, which optimizes the material toughness. Inspired by these biological structures, here, an ultratough nanocomposite laminate is prepared by the integration of ultrasmall calcium phosphate oligomers (CPO, 1 nm in diameter) within poly(vinyl alcohol) (PVA) and sodium alginate (Alg) networks through a simple three-step strategy. Owing to the small size of inorganic building units, strong multiple molecular interactions within integrated organic-inorganic hierarchical structure are built. The resulting laminates exhibit ultrahigh bending strain (>50% without fracture) and toughness (21.5-31.0 MJ m-3), which surpass natural nacre and almost all of the synthetic laminate materials that have been reported so far. Moreover, the mechanics of this laminate is tunable by changing the water content within the bulk structure. This work provides a way for the development of organic-inorganic nanocomposites with ultrahigh bending toughness by using inorganic ionic oligomers, which can be useful in the fields of tough protective materials and energy absorbing materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.