Abstract
Cytochrome c oxidase (CcO) is a heme copper oxidase (HCO) that catalyzes the natural reduction of oxygen to water. A profound understanding of some of the elementary steps leading to the intricate 4e-/4H+ reduction of O2 is presently lacking. A total spin St = 1 FeIII-(O22-)-CuII (IP) intermediate is proposed to reduce the overpotentials associated with the reductive O-O bond rupture by allowing electron transfer from a tyrosine moiety without the necessity of any spin-surface crossing. Direct evidence of the involvement of IP in the CcO catalytic cycle is, however, missing. A number of heme copper peroxido complexes have been prepared as synthetic models of IP, but all of them possess the catalytically nonrelevant St = 0 ground state resulting from antiferromagnetic coupling between the S = 1/2 FeIII and CuII centers. In a complete nonheme approach, we now report the spectroscopic characterization and reactivity of the FeIII-(O22-)-CuII intermediates 1 and 2, which differ only by a single -CH3 versus -H substituent on the central amine of the tridentate ligands binding to copper. Complex 1 with an end-on peroxido core and ferromagnetically (St = 1) coupled FeIII and CuII centers performs H-bonding-mediated O-O bond cleavage in the presence of phenol to generate oxoiron(IV) and exchange-coupled copper(II) and PhO• moieties. In contrast, the μ-η2:η1 peroxido complex 2, with a St = 0 ground state, is unreactive toward phenol. Thus, the implications for spin topology contributions to O-O bond cleavage, as proposed for the heme FeIII-(O22-)-CuII intermediate in CcO, can be extended to nonheme chemistry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.