Abstract

Backtracking search algorithm (BSA) is a nature-based optimization technique extensively used to solve various real-world global optimization problems for the past few years. The present work aims to introduce an improved BSA (ImBSA) based on a multi-population approach and modified control parameter settings to apprehend an ensemble of various mutation strategies. In the proposed ImBSA, a new mutation strategy is suggested to enhance the algorithm’s performance. Also, for all mutation strategies, the control parameters are updated adaptively during the algorithm’s execution. Extensive experiments have been performed on CEC2014 and CEC2017 single-objective benchmark functions, and the results are compared with several state-of-the-art algorithms, improved BSA variants, efficient differential evolution (DE) variants, particle swarm optimization (PSO) variants, and some other hybrid variants. The nonparametric Friedman rank test has been conducted to examine the efficiency of the proposed algorithm statistically. Moreover, six real-world engineering design problems have been solved to examine the problem-solving ability of ImBSA. The experimental results, statistical analysis, convergence graphs, complexity analysis, and the results of real-world applications confirm the superior performance of the suggested ImBSA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.