Abstract

Open Cu sites were loaded to the UiO-67 metal-organic framework (MOF) skeleton by introduction of flexible Cu-binding pyridylmethylamine (pyma) side chains to the biphenyldicarboxylate linkers. Distance between Cu centers in the MOF pores was tuned by controlling the density of metal-binding side chains. "Interacted" Cu-pair or "isolated" monomeric Cu sites were achieved with high and low (pyma)Cu side chain loading, respectively. Spectroscopic and theoretical studies indicate that "interacted" Cu pairs can effectively bind and activate molecular dioxygen to form Cu2O2 clusters, which showed high catalytic activity for aerobic oxidative C-N coupling. On the contrary, MOF catalyst bearing isolated monomeric Cu sites only showed modest catalytic activity. Enhancement in catalytic performance for the Cu-pair catalyst is attributed to the remote synergistic effect of the paired Cu site, which binds molecular dioxygen and cleaves the O═O bond in a collaborative manner. This work demonstrates that noncovalently interacted metal-pair sites can effectively activate inert small molecules and promote heterogeneous catalytic processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.