Abstract

The sense and avoid capability enables insects to fly versatilely and robustly in dynamic and complex environment. Their biological principles are so practical and efficient that inspired we human imitating them in our flying machines. In this paper, we studied a novel bio-inspired collision detector and its application on a quadcopter. The detector is inspired from Lobula giant movement detector (LGMD) neurons in the locusts, and modeled into an STM32F407 Microcontroller Unit (MCU). Compared to other collision detecting methods applied on quadcopters, we focused on enhancing the collision accuracy in a bio-inspired way that can considerably increase the computing efficiency during an obstacle detecting task even in complex and dynamic environment. We designed the quadcopter's responding operation to imminent collisions and tested this bio-inspired system in an indoor arena. The observed results from the experiments demonstrated that the LGMD collision detector is feasible to work as a vision module for the quadcopter's collision avoidance task.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call