Abstract
Long non-coding RNAs (lncRNAs) have emerged as significant players in diverse cellular processes, including cell differentiation. Advancements in computational methodologies have facilitated the prediction of lncRNA functions, enabling insights even in non-model organisms like pathogenic parasites, in roles such as parasite development, antigenic variation, and epigenetics. In this work, we focus on the apicomplexan Toxoplasma gondii differentiation process, where the infective stage, tachyzoite, can develop into the cysted stage, bradyzoite, under stress conditions. Using a publicly available transcriptome dataset, we predicted putative lncRNA sequences associated with this differentiation process. Notably, a substantial proportion of these putative lncRNAs exhibited stage-specific expression, particularly at the bradyzoite stage. Furthermore, co-expression patterns between coding transcripts and putative TglncRNAs suggest their involvement in shared processes, such as bradyzoite development. Putative TglncRNA loci analysis revealed their potential influence on the expression of nearby coding genes, including subtelomeric genes unique to the T. gondii genome. Finally we propose a k-mer analysis approach to predict putative functional relationships between characterized lncRNAs from model organisms like Homo sapiens and the putative T. gondii lncRNAs. Our perspective led to predict putative T. gondii lncRNA that potentially could act mediating DNA damage repair pathways, opening a new study field to validate this kind of adaptive mechanisms of T. gondii in response to stress conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.