Abstract

We report simple, facile and size-controllable synthesis of uniform Ag nanoparticles with tobacco mosaic virus (TMV) as a biomediator in the absence of external reducing agents. UV–vis and TEM analysis show that Ag nanoparticles with average diameter of 2, 4 and 9nm were obtained by simply tuning the ratio of TMV/Ag(NH3)2+. The Ag formation in the presence of TMV showed autocatalytic growth followed by coalescence. The as-prepared TMV-mediated Ag nanoparticles show substantially higher catalytic and antibacterial activities than previous results. For the 4-nitrophenol hydrogenation reaction, the rate constants per surface area for 2 and 9nm Ag nanoparticles were determined to be 0.64 and 1.2Lm−2s−1 respectively. Both Kirby–Bauer disk diffusion test and tube culture results demonstrate high antibacterial activity of TMV-mediated Ag particles against Escherichia coli, with minimal inhibition concentration (MIC) of 2.3 and 2.5ppm for 2 and 9nm Ag nanoparticles respectively. We expect that our biomediated Ag synthesis approach can be readily extended to other biomaterials and metal nanoparticle systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.