Abstract

Poly (L-lactic acid) (PLLA) has emerged as a promising orthopedic implant material due to its favorable strength and biodegradability. However, challenges such as low toughness and limited osteoinductivity hinder its widespread use in bone fixation. This study focuses on enhancing the toughness and osteogenic activity of PLLA-based orthopedic implants. Inspired by reinforcement techniques in the construction industry, we designed a structure comprising flexible fibers enveloped by PLLA/hydroxyapatite (HA) crystalline phases. Initially, PLLA/poly (butylene succinate-co-adipate) (PBSA)/HA composites with “sea-island” morphology were prepared through melt-compounding. Subsequently, the highly oriented PBSA fibers were in situ formed during microinjection molding for bone screw fabrication. Comprehensive investigation into the structural-mechanical property relationship revealed a significant increase in elongation at break (from 5.4 % to 59.4 % with an optimal PBSA/HA ratio), while maintaining a high stiffness and a slight decrease in tensile strength (from 62 MPa to 56 MPa). The flexural tests of the resulting composite bone screws demonstrated a significant increase in toughness. Additionally, the in vivo studies corroborated the osteogenic potential of the microinjection molded bone screws by using hematoxylin and eosin (HE) and Masson staining. The methodology presented in this study offers a promising approach for advancing PLLA-based fixation devices in bone repair applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.