Abstract

For decades, titanium has been the preferred material for dental implant fabrication. However, metallic ions and particles can cause hypersensitivity and aseptic loosening. The growing demand for metal-free dental restorations has also promoted the development of ceramic-based dental implants, such as silicon nitride. In this study, silicon nitride (Si3N4) dental implants were fabricated for biological engineering by photosensitive resin based digital light processing (DLP) technology, comparable to conventionally produced Si3N4 ceramics. The flexural strength was (770 ± 35) MPa by the three-point bending method, and the fracture toughness was (13.3 ± 1.1) MPa · m1/2 by the unilateral pre-cracked beam method. The elastic modulus measured by the bending method was (236 ± 10) GPa. To confirm whether the prepared Si3N4 ceramics possessed good biocompatibility, in vitro biological experiments were performed with the fibroblast cell line L-929, and preferable cell proliferation and apoptosis were observed at the initial stages. Hemolysis test, oral mucous membrane irritation test, and acute systemic toxicity test (oral route) further confirmed that the Si3N4 ceramics did not exhibit hemolysis reaction, oral mucosal stimulation, or systemic toxicity. The findings indicate that Si3N4 dental implant restorations with personalized structures prepared by DLP technology have good mechanical properties and biocompatibility, which has great application potential in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call