Abstract

In the COVID-19 pandemic, it is essential to transport medical supplies to specific locations accurately, safely, and promptly on time. The application of drones for medical supplies delivery can break ground traffic restrictions, shorten delivery time, and achieve the goal of contactless delivery to reduce the likelihood of contacting COVID-19 patients. However, the existing optimization model for drone delivery is cannot meet the requirements of medical supplies delivery in public health emergencies. Therefore, this paper proposes a bi-objective mixed integer programming model for the multi-trip drone location routing problem, which allows simultaneous pick-up and delivery, and shorten the time to deliver medical supplies in the right place. Then, a modified NSGA-II (Non-dominated Sorting Genetic Algorithm II) which includes double-layer coding, is designed to solve the model. This paper also conducts multiple sets of data experiments to verify the performance of modified NSGA-II. Comparing with separate pickup and delivery modes, this study demonstrates that the proposed optimization model with simultaneous pickup and delivery mode achieves a shorter time, is safer, and saves more resources. Finally, the sensitivity analysis is conducted by changing some parameters, and providing some reference suggestions for medical supplies delivery management via drones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.