Abstract

Bio-resourced mannitol was employed to synthesize eco-friendly ammonium salt of mannitol hexaphosphate acid ester (AMHPE) by facile, solvent-free tactics. Limiting oxygen index (LOI) of cotton treated with 20–30% AMHPE reached 36.0–42.3% to obtain high-efficiency flame retardancy. After 50 laundering cycles, the LOI value of 30% AMHPE treated cotton still retains an LOI value of 27.9%, revealing outstanding durability owing to new P–O–C covalent bonds formed bewteen –P = O(ONH4)2+ groups of AMHPE and cotton. The decomposition temperature of treated cotton was significantly lowered and its char residue was much higher than control cotton in N2. The PHRR and THR values of treated cotton were notably declined to 93.41% and 56.54% respectively, and the residual is 28 times higher by contrast. The combustion products and flame retardant mechanism of treated cotton were analyzed by TG-IR and cone calorimetry. These results indicate that AMHPE flame retardant cotton has acquired efficient flame retardancy, excellent durability and thermostability. Solvent-free synthesis of bio-resourced N–P synergetic flame retardant possessing excellent flame retardancy, unexceptionable durability and thermostability to reduce cotton fire hazard.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.