Abstract

We propose a bio-optical inversion model that retrieves the absorption contributions of phytoplankton and colored detrital matter (CDM), as well as the phytoplankton size classes (PSCs), from total minus water absorption spectra. The model is based on three-component separation of phytoplankton size structure and a genetic algorithm. The model performance was tested on two independent datasets (the NASA bio-Optical Marine Algorithm Dataset (NOMAD) and the northern South China Sea (NSCS) dataset). The relationships between the estimated and measured values were strongly linear, especially for a CDM (412), and the Root Mean Square Error (RMSE) of the CDM exponential slope (S CDM) was relatively low. Next, the inversion model was directly applied to in-situ total minus water absorption spectra determined by an underwater meter during a cruise in September 2008, to retrieve the phytoplankton size structure in the seawater. By comparing the measured and retrieved chlorophyll a concentrations, we demonstrated that total and size-specific chlorophyll a concentrations could be retrieved by the model with relatively high accuracy. Finally, we applied the bio-optical inversion model to investigate changes in phytoplankton size structure induced by an anti-cyclonic eddy in the NSCS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.