Abstract
Flying insects, such as flies and bees, have evolved the capability to rely solely on visual cues for smooth and secure landings on various surfaces. In the process of carrying out tasks, micro unmanned aerial vehicles (UAVs) may encounter various emergencies, and it is necessary to land safely in complex and unpredictable ground environments, especially when altitude information is not accurately obtained, which undoubtedly poses a significant challenge. Our study draws on the remarkable response mechanism of the Lobula Giant Movement Detector to looming scenarios to develop a novel UAV landing strategy. The proposed strategy does not require distance estimation, making it particularly suitable for payload-constrained micro aerial vehicles. Through a series of experiments, this strategy has proven to effectively achieve stable and high-performance landings in unknown and complex environments using only a monocular camera. Furthermore, a novel mechanism to trigger the final landing phase has been introduced, further ensuring the safe and stable touchdown of the drone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.