Abstract

Affected by COVID-19, the maintenance process of machine tools is significantly hindered, while unmanned maintenance becomes an emerging trend in such background. So far, three challenges, namely, the dependence on maintenance experts, the dynamic maintenance environments, and unsynchronized interactions between physical and information sides, exist as the main obstacles in its widespread applications. In order to fill this gap, a bio-inspired LIDA cognitive-based Digital Twin architecture is proposed, so as to achieve unmanned maintenance of machine tools through a self-constructed, self-evaluated, and self-optimized manner. A three phases process in the architecture, including the physical phase, virtual phase, and service phase, is further introduced to support the cognitive cycle for unmanned maintenance of machine tools. An illustrative example is depicted in the unmanned fault diagnosis on the rolling bearing of a drilling platform, which validates the feasibility and advantages of the proposed architecture. As an explorative study, it is wished that this work provides useful insights for unmanned maintenance of machine tools in a dynamic production environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.