Abstract
Efforts to enhance the speed and reduce the energy consumption of underwater vehicles have led to the proposal of a novel mucus release structure inspired by the secretion of mucus cells on fish skin. This structure features interconnected microgrooves with excellent flexibility for adjusting to different states, effectively reducing drag through mucus release. Numerical analysis of the drag reduction performance of the mucous-releasing micro-pore structure was conducted using ANSYS Fluent 19.2 software. This structure is capable of reducing the velocity gradient near the wall and, owing to the presence of micro-pore structures, decreasing the overall compressed area, thereby achieving drag reduction effects. The experimental results revealed a drag reduction effect of 20.56% when the structure was bent at an angle of 120°. The drag reduction varied under different attitudes such as tension and compression. This mucus release structure achieves reusability through a direct mucous injection process. This research provides valuable insights for the drag reduction study of underwater vehicles, such as ships and submarines, laying a foundation for advancing the development and applications of this field in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.