Abstract
In this paper we describe a multiagent crime simulation model that resorts to concepts of self-organizing bio-inspired systems, in particular, of the Ant Colony Optimization algorithm. As the matching between simulated and real crime data distributions depends upon the tuning of some control parameters of the simulation model (in particular, of the initial places where criminals start out), we have modeled the calibration of the simulation as an optimization problem. The solution for the allocation of criminals into gateways is also undertaken by a bio-inspired method, namely, a customized Genetic Algorithm. We show that this approach allows for the automatic discovery of gateway configurations that, when employed in the simulation, produce crime distributions that are statistically close to those observed in real data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.